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A large region of low-dissolved-oxygen bottom waters (hypoxia)
forms nearly every summer in the northern Gulf of Mexico because
of nutrient inputs from theMississippi River Basin andwater column
stratification. Policymakers developed goals to reduce the area of
hypoxic extent because of its ecological, economic, and commercial
fisheries impacts. However, the goals remain elusive after 30 y of
research and monitoring and 15 y of goal-setting and assessment
because there has been little change in river nitrogen concentra-
tions. An intergovernmental Task Force recently extended to
2035 the deadline for achieving the goal of a 5,000-km2 5-y average
hypoxic zone and set an interim load target of a 20% reduction of
the spring nitrogen loading from the Mississippi River by 2025 as
part of their adaptive management process. The Task Force has
asked modelers to reassess the loading reduction required to
achieve the 2035 goal and to determine the effect of the 20% in-
terim load reduction. Here, we address both questions using a prob-
abilistic ensemble of four substantially different hypoxia models.
Our results indicate that, under typical weather conditions, a 59%
reduction in Mississippi River nitrogen load is required to reduce
hypoxic area to 5,000 km2. The interim goal of a 20% load reduction
is expected to produce an 18% reduction in hypoxic area over the
long term. However, due to substantial interannual variability, a
25% load reduction is required before there is 95% certainty of
observing any hypoxic area reduction between consecutive 5-y
assessment periods.
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Alarge region of low-dissolved-oxygen (DO) bottom waters
(hypoxia; DO < 2 mg·L−1) has formed nearly every summer

in the Gulf of Mexico for at least the last three decades (1–3).
Hypoxia forms because of respiration of organic matter in bot-
tom waters and a vertically stratified water column restricting
reaeration (4–6). Both factors are related to the outflow of
freshwater and nutrients from the Mississippi River Basin, which
typically peaks in March through May. Nutrients stimulate phy-
toplankton production, much of which settles in early summer,
and bottom water DO (BWDO) is consumed during its de-
composition. River outflows create a fresher, warmer surface
layer above a colder, saltier bottom layer, limiting the vertical
diffusion of DO (2).
Policymakers developed hypoxia reduction goals because of

ecological, economic, and commercial fisheries impacts (7–10).
However, the goals remain elusive after >30 y of research and
monitoring (3, 11) and >15 y of assessment and goal-setting (5, 12–
16). A Gulf Task Force recently agreed to retain the 5-y moving
average goal of a 5,000-km2 hypoxic zone, but extended the dead-
line from 2015 to 2035 (17). The timeframe was reset because the
2015 hypoxic zone was 16,760 km2 and the most recent 5-y average
was 14,024 km2

—greater than the long-term average of 13,751 km2

(1). Missing the goal was not unexpected because the 5-y average
load of late spring nitrogen (N) from the Mississippi River remains
similar to the 1980–1996 baseline (Fig. 1) and far from the 45%
reduction the Task Force recommended (17). To support its
adaptive management process and to ensure progress, the Task

Force established a milestone of a 20% reduction in N load by 2025
(17). Two questions emerged during their deliberations: (i) Has the
required load reduction changed? and (ii) what hypoxic area would
result from meeting the 20% load reduction milestone?
We explore both questions with an ensemble of four different

models developed independently to produce annual forecasts
(Fig. 2) and to evaluate load reduction scenarios. The University
of Michigan (U-M) model is a one-dimensional Bayesian adap-
tation of a river model that predicts DO downstream from sources
of nutrient-stimulated organic matter, accounting for its decom-
position and DO reaeration. The North Carolina State University
(NCSU) Bayesian biophysical model is a mass-balance model of
the eastern and western Gulf shelf that predicts DO in terms of
nutrient-stimulated primary production, wind-driven transport,
sedimentation, decomposition, sediment DO demand, and rea-
eration. The Louisiana State University/Louisiana University
Marine Consortium (LSU/LUMCON) and the Virginia Institute
of Marine Sciences (VIMS) models are linear regressions based
on different assumptions and statistically identified relationships
for the response of hypoxia to nutrients and stratification. Further
details are in Methods.
The benefits of using multiple models are being increasingly

recognized (18–23). Because each model is a different represen-
tation of the real world, the advantages of multiple models include
viewing problems from different conceptual perspectives, testing
the effects of different assumptions, and reducing decision risk
(22). The integration of the models provides increased confidence
when they agree and helps identify knowledge gaps when they
do not. However, multimodel efforts addressing policy-relevant
natural resource issues often lack rigorous frameworks to quantify
how model uncertainties propagate into formal ensembles. As for
climate and weather forecasting (24), there is a need to develop
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probabilistic ensembles to help bridge the gap between research
and policymaking (25–29). Our work advances that goal by for-
mally propagating model uncertainty into our ensemble predic-
tions to allow for quantitative risk assessment and policies that
are robust within realistic uncertainty ranges.

Results
The U-M model (30) explained 69% of the variability in hypoxic
area extent over 1985–2011. This model (and all others) was
subjected to a leave-one-year-out cross-validation, in which it
explained 45% of hypoxic area variability. This model’s annual
hypoxia forecasts have compared well with measurements, es-
pecially for years without storms or high winds (R2 = 70%;
Fig. 2). Its load–response curve indicates that a reduction in
hypoxia to 5,000 km2 requires a 58% [95% credible interval (CI):
49–70%] decrease in May total nitrogen (TN) load relative to the
1980–1996 average (Table 1). A 20% reduction would produce a
hypoxic extent of 15,000 km2 (95% CI: 13,500–16,500 km2). The
NCSU model, calibrated for 1985–2011, explains ∼75% of the
variability in BWDO and 70% of the variability in hypoxic area.
The cross-validation performed similarly to the full calibration
(R2 = 72% for BWDO) (31). This model was first used for
hypoxia forecasts in 2015 (Fig. 2) and estimates that reaching the
hypoxia goal requires a 56% (95% CI: 50–62%) decrease in
spring bioavailable N load (Table 1). A 20% reduction would
produce a hypoxic extent of 12,400 km2 (95% CI: 10,800–
14,000 km2). The LSU/LUMCON model explains 92% of the
variation in hypoxic extent since 2000, after removing 5 y with
high wind/storms. The cross-validation on the same calibration
dataset showed similar model performance (R2 = 87%). Its an-
nual forecasts have been fairly accurate since 2002 (Fig. 2).
Without the five high-wind/storm years, its forecasts accounted
for 56% of the observed variability, and the model indicates that
a 56% (95% CI: 50–64%) reduction in the May nitrite+nitrate
(NO) load is needed to meet the hypoxia goal (Table 1). A 20%
reduction would produce a hypoxic extent of 15,600 km2 (95%
CI: 14,400–16,800 km2). The VIMS model explained 64% of the
variability in hypoxic area between 1985 and 2015, and the cross-
validation explained 52% of the interannual variation. A sim-
plified version of the model has been used to produce blind
forecasts since 2014 (Fig. 2). This model indicates that an 80%
(95% CI: 50%) reduction in the May NO load is needed to meet
the hypoxia goal (Table 1), while a 20% load reduction would
result in a hypoxic area of 12,900 km2 (95% CI: 10,700–
15,000 km2).
The ensemble modeling results indicate that, under typical

weather conditions, a 59% reduction in N load from the 1980–
1996 baseline would be required to reach the goal. The 20%

reduction interim goal would result in 13,900 km2 (95% CI:
11,100–16,400 km2), corresponding to an 18% reduction in
hypoxic extent over the long-term, and a 1% reduction compared
with the most recent 5-y period (Fig. 3 and Table 1).

Discussion
While multiple models have been used to inform hypoxia man-
agement in the past, in this work, multiple models are synthe-
sized within a probabilistic framework to develop a “consensus”
estimate of how the system will respond and to quantify the
uncertainty in that estimate. By developing the ensemble, we
explore and quantify uncertainty due to differences in model
structure and inputs (32), which is not captured by the individual
models themselves. Our four models differ substantially in
mechanistic form, type of N load driver, internal sources of DO
demand, and criteria for selecting calibration datasets. For ex-
ample, the VIMS and LSU/LUMCON models are linear regres-
sions with different assumptions on the form of the relationship
between nutrients, stratification, and hypoxia, whereas the U-M
and NCSU models are based on different mechanistically derived
relationships. In addition, while the VIMS and LSU/LUMCON
models use NO as the primary nutrient driver, the U-M model
uses TN, and the NCSU model uses an estimation of bioavailable
N (Fig. 1). The U-M and LSU/LUMCON models use nutrient
load as the primary driver, and, as a result, their response curves
are steeper than the VIMS curve, which attributes more variation
in hypoxia to freshwater discharge and wind. The NCSU model
provides a compromise in that load, freshwater discharge, and
wind are incorporated into its mechanistic framework. The U-M,
NCSU, and VIMS models use the period of record from 1985 for
calibration, whereas the LSU/LUMCON model is calibrated from
2000 on, under the hypothesis that the nutrient–hypoxia rela-
tionship has changed over time. Finally, the U-M, NCSU, and
VIMS models define outlier years according to quantitative me-
teorological criteria, whereas the LSU/LUMCON model defines
outliers based on sea conditions during the midsummer sampling
cruise (Methods).
Despite these differences, the individual model results show

similar responses to load reductions (Fig. 3), and the mean en-
semble results indicate that a 59% reduction from the 1980–
1996 average N load is needed to meet the Task Force goal
(Table 1). The worst-case scenario in our ensemble results (up-
per bound of predictive intervals) indicates that even an 80%
load reduction (which is likely infeasible) may not meet the goal

Fig. 1. May nitrogen loads from the Mississippi and Atchafalaya rivers
(MT N·day−1) for TN, nitrate plus nitrite nitrogen (NO), and bioavailable ni-
trogen (NO + ammonia + 12% of organic N).

Fig. 2. Observed hypoxic area (1985–2015) and forecast track record
(2002–2015) for the four models. Gray bars are estimates of hypoxia area from
LUMCON (1), and open bars are geostatistical estimates (with 95% confidence
intervals) (70). The annual forecasts made assuming normal weather condi-
tions are shown as circles (red, U-M; purple, LSU/LUMCON; blue, VIMS; and
orange, NCSU). Filled and open circles identify normal weather and “wind/
storm” years, respectively (as defined by each model).
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(Table 1 and Fig. 3). However, this scenario represents the tail of
the probability distribution and is unlikely. We estimate that the
probability that hypoxia would be <5,000 km2 under an 80% load
reduction is 87%. The 59% reduction is larger than the 45%
reduction called for in the most recent Action Plan (17), but
within the range of previous individual models (5, 30, 31, 33–36).
This percentage is also higher than recommendations made for
other eutrophic systems. For example, a multimodel effort (20)
recommended a 40% phosphorus (P) load reduction for Lake
Erie under the Great Lakes Water Quality Agreement (37); the
Chesapeake Bay agreement calls for a 25% reduction in N load
and a 24% reduction in P (38); and the Neuse River Strategy
calls for a 30% reduction in N load (23).
The Task Force also set an interim N load reduction target of

20% by 2025 (17). Our analysis suggests that a 20% reduction may
not have a measureable effect within the next 5–10 y. According to
the ensemble modeling results, a 20% reduction will result in a
13,900-km2 mean hypoxic region (95% CI: 11,100–16,400 km2),
which is not significantly different from the current 5-y average of
14,024 km2 (Table 1). However, over the long term (as opposed to
a 5-y average, which is subject to annual anomalies), a 20% re-
duction would produce an 18% reduction in hypoxic area, relative
to model-estimated current conditions (Fig. 3).
An important contribution of this study, relative to previous

Gulf hypoxia modeling efforts, is the characterization of model
structure and input uncertainty, in addition to model parameter
and predictive error uncertainty (32). We developed two types of
predictive intervals that distinguish different sources of uncer-
tainty and which are relevant to different types of management
questions (Fig. 3). The credible interval for the mean of the four
models quantifies the deterministic uncertainty associated with
the response curve (Fig. 3, shaded area), which can be parti-
tioned between within-model uncertainty (i.e., parameter un-
certainty) and across-model uncertainty (i.e., input and structural
uncertainty). If hypoxia observations are taken over a large
number of years (i.e., n > 30), we expect the observed mean will
fall within this credible interval. For load reductions of 0–50%,
the across-model uncertainty accounts for 60% of the total un-
certainty on average. For an 80% reduction, the across-model
uncertainty accounts for 70%, reflecting the increasing influence
of structural uncertainty. At large load reductions, the VIMS
predictions are substantially larger than the other models (Fig. 3)
because the model attributes more variation in hypoxia to river
discharge and wind forcing, and less to N load. Greater ensemble
uncertainty is expected at large load reductions where observa-
tional data are scarce and the response of the system is less
certain. This is especially true for empirical models, where ex-
trapolating predictions near or outside of the calibration range
requires caution. Across-model structural uncertainties un-
derscore the need for continued research to address mechanistic
uncertainties (discussed below). In general, our results show that
across-model uncertainty represents a considerable portion of
the overall deterministic uncertainty, and accounting for this
uncertainty will lead to more dependable, albeit wider, credible
intervals.

The 5-y predictive interval (Fig. 3, gray lines) addresses the
additional uncertainty that arises when estimating a mean value
from a limited sample size (e.g., the 5-y period used to assess the
Hypoxia Task Force goal) (17). The portion of overall un-
certainty due to model prediction error can be used to estimate
the minimum load reduction required to achieve a statistically
significant decrease in hypoxia across 5-y periods. Our results
suggest that a 25% load reduction would be required to be 95%
certain to observe a reduction in hypoxic area when comparing
any two 5-y periods. This supports our finding that the 20% in-
terim load reduction may not produce a measurable effect over
5- to 10-y time scales.
All models are simplified representations of the real world, and

the models used here are no exception. Although N has histori-
cally been considered the main nutrient driver of hypoxia in the
Gulf, the relative roles of N vs. P limitation of primary production,
and how that ratio may change seasonally and spatially, remains
unclear (39). Based on studies suggesting P limitation on the Gulf
shelf at critical time periods, the Task Force adopted a dual nu-
trient strategy, with the same percent reduction goals for N and P
(5, 17). While our models are not designed to answer this ques-
tion, other modeling supports the dual strategy, with percentage
reductions for N and P loads in line with our N load recommen-
dations (40, 41). Expanding the models to incorporate both N and
P loads, coupled with better understanding of the stoichiometry
regulating primary productivity, has the potential to significantly
improve our ability to assess different N and P load-reduction
scenarios. Until then, we believe that current evidence points to-
ward a dual-nutrient strategy as the most prudent management
approach (39).
There is uncertainty in how internal nutrient loads and sediment

oxygen demand (SOD) will modulate the system’s response to
external load reductions, which presents a challenge for long-term

Table 1. Model estimates of the load reduction required to
meet the 5,000-km2 Task Force goal and estimates of the hypoxic
area expected in response to a 20% load reduction

Model

Load reduction
needed for 5000 km2

hypoxia, % (95% CI)

Hypoxia area
expected for a 20%

load reduction,
1,000 km2 (95% CI)

U-M 58 (49–70) 15.0 (13.5–16.5)
NCSU 56 (50–62) 12.4 (10.8–14.0)
LSU/LUMCON 56 (50–64) 15.6 (14.4–16.8)
VIMS 80 (50–) 12.9 (10.7–15.0)
Ensemble 59 (50–) 13.9 (11.1–16.4)

Fig. 3. Load–response curves for the individual models, with the ensemble
mean curve, 95% CIs accounting for deterministic uncertainty (shaded area),
and 95% predictive intervals accounting for prediction error (averaged
across a 5-y period) and deterministic uncertainty (gray solid lines). Gray
dotted vertical and horizontal lines indicate the mean hypoxic area expected
in response to a 20% load reduction from the 1980–1996 long-term
average, and the mean load reduction required to achieve the 5,000-km2

Task Force goal. For comparison, observations (70) from 1985 to 2011 for
years when the loads were below the 1980–1996 baseline are superimposed
on the graph for normal years (filled circles) and wind/storm years (open
boxes).
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forecasting. Currently, only the NCSU model accounts for this
process by predicting changes in SOD as a function of long-term
average nutrient loads. There is also uncertainty in predicting the
impacts of climate change on meteorological and hydrological
patterns, and how those impacts may affect the system’s suscepti-
bility to hypoxia. For example, the frequency, intensity, and timing
of droughts and storms are predicted to shift as a result of global
climate change (42), with potential interacting effects on the timing
and amount of nutrient delivery, the intensity and duration of
stratification, the solubility of oxygen, and biogeochemical cycling
(43, 44). More research is needed to enhance our predictive un-
derstanding of how these and other processes may cause shifts in
internal feedbacks and complex nonlinearities in response to
management actions (45–47). However, until these structural un-
certainties are decreased, we think that it is critical to develop
probabilistic models and probabilistic ensembles of models whose
results are communicated to decision-makers to support adaptive
strategies that consider uncertainties in system response.
Despite these uncertainties, our results show that the hypoxia

response to N load reductions is robust across substantially dif-
ferent and independent models, providing increased confidence
that the load reduction proposed will achieve management goals.
The strong relationship between nutrient loading and hypoxia
illustrated here is also consistent with the results from sediment
cores studies that indicate little to no hypoxia on the Gulf shelf
before the escalation of nitrogen fertilizer use in the mid-1900s
(48). However, it matters little whether the load reduction target
is 30%, 45%, or 59% if insufficient resources are in place to
make even modest reductions. Recent analyses by the De-
partment of Agriculture (49, 50) comparing modeled nutrient
losses between the present state and a hypothetical past without
conservation practices indicate that there is some level of con-
servation effectiveness. However, while there are undoubtedly
significant lag times between action on the land and changes in
loads (51, 52), river nitrate concentrations have not declined since
the 1980s (53, 54), and the current 5-y running average nitrate load
to the Gulf is not significantly different from the 1980–1996 baseline
(ref. 17; https://toxics.usgs.gov/hypoxia/mississippi/oct_jun/index.
html) after US Farm Bill conservation programs have spent more
than $28 billion in the 20 Mississippi Basin states since 1995 (55).
Most large-scale environmental restoration efforts are struc-

tured within an adaptive management framework (56)—one that
sets goals, takes action, measures progress, and adjusts actions if
needed. With little documented progress in loads or hypoxic
extent, clearly something more or something different is needed
(57). Several analyses have demonstrated a range of approaches
and potential pathways toward the desired load reduction, in-
cluding altering fertilizer application rates (58), using cover crops
(59), nutrient management (60, 61), alternatives to corn-based
biofuels (62, 63), and combinations of the above (12, 34, 64–68).
Most of these studies emphasize the value of targeting funding to
locations and practices that make the most difference. It is time
to ask what is preventing more extensive implementation of
some or all of these strategies.

Methods
Nutrient Loads. All models use N load estimates developed by the US Geological
Survey (USGS) (https://toxics.usgs.gov/hypoxia/mississippi/nutrient_flux_yield_est.
html). The U-Mmodel uses the May TN load; the LSU/LUMCON and VIMSmodels
use the May NO load; and the NCSU model uses a “bioavailable” N load cal-
culated for the 30- to 90-d period preceding each cruise and estimated as in-
organic nitrogen (NO and ammonia-N) plus 12% of the organic N (31). Previous
studies suggested no apparent correlation between hypoxic area (or predictive
errors) in 1 y and either N load or hypoxic extent in the previous year. Thus,
including predictors representing carryover effects from the previous year did
not substantially improve model fit (31, 35, 69). The loads used by each model
show similar interannual patterns (Fig. 1). Reductions discussed herein are
expressed as a percent reduction from the 1980–1996 average—the Task Force
baseline (13, 14, 17).

Hypoxic Extent. The models are calibrated to hypoxic conditions derived
fromBWDOmeasurements taken duringmidsummer shelf-wide cruises (1). The

LSU/LUMCON and VIMS models are calibrated to manually interpolated
estimates (1), whereas the NCSU and U-M models are calibrated to geo-
statistically based estimates (70). While there are some differences be-
tween these two approaches, they track each other well over the last two
decades (Fig. 2).

Impact of Weather Extremes. Because some models do not account for wind–
hypoxia interactions, and because major storms are relatively rare, the re-
sponse curves are generated for “normal weather” years. The results are
conservative because storm events reduce hypoxia. For example, strong
westerly winds can force the hypoxic region to “pile up” (shrinking the
hypoxic area while maintaining volume), and storms can increase mixing,
disrupting stratification and reaerating the water column. These disruptions
can reduce the size of the hypoxic area at the time of the survey cruises, but
are transitory. Monitoring data indicate that the DO levels return to prestorm
conditions within 2 wk (71, 72).

The U-M, NCSU, and VIMS models identified 6 of the 31 y since 1985 with
unusual weather based on quantitative criteria (30). “High wind years”
(1998 and 2009) were years with unusually strong westerly winds in the 2-mo
period preceding the shelf-wide cruise. The westerly wind velocities for
these years were 0.96 and 1.11 m·s−1, respectively, compared with a mean
of −0.44 m·s−1. “Storm years” (1988, 1989, 1997, and 2003) met two criteria:
(i) National Oceanic and Atmospheric Administration (NOAA) storm track
data showed tropical storms or hurricanes in the vicinity of the study area
within 2 wk of the shelf-wide cruise; and (ii) wind stress (wind speed
squared) at coastal stations was unusually high in the 2 wk leading up to the
shelf-wide cruises (>35 m2·s−2). The LSU/LUMCON model eliminated 5 of the
16 y since 2000 (2003, 2008, 2009, 2011, and 2013) based on sea conditions
within 2 wk before and during the cruise, later confirmed by review of
National Weather Service records. The identification of different years by
different models reflects an intrinsic level of subjectivity in classifying a year
as having “unusual” weather. Including all models in the ensemble allows us
to better capture that uncertainty.

U-M Model. This is an adaptation of a river model (73), predicting DO con-
centrations downstream from point sources of organic matter loads. It uses
mass balance equations to estimate the DO consumed during organic matter
decomposition and to predict the DO deficit (74) in longitudinal profiles of
subpycnocline DO concentration downstream from the outflows of the
Mississippi and Atchafalaya Rivers. Organic matter loads are calculated from
the May TN loads by converting TN to algal carbon and the associated DO
demand based on Redfield and respiratory ratios (75). The length of the
hypoxic zone is the sum of all locations along the longitudinal profile where
DO is below the hypoxic threshold. Hypoxic length is converted to area
through empirical relationship (30). The model is calibrated through Bayesian
inference over the period 1985–2011 (30). The model has been compared with
others (18) and was used to explore N vs. P control (76), provide guidance for
the Gulf Action Plans (13, 14), and explore impacts of climate change (77). The
load–response curve was developed with parameter estimates for normal
weather years.

NCSU Model. This Bayesian biophysical model predicts BWDO concentrations
in western and eastern segments of the Louisiana–Texas shelf that are
separated by the Atchafalaya River outfall (31). BWDO predictions are
converted to hypoxic area by using empirical relationships between mean
BWDO and hypoxic area, both of which are determined from a geostatistical
model (70). The model is a steady-state solution to mechanistic, mass-
balance equations (31), and is calibrated within a Bayesian framework
that accounts for prior information on model parameters. It systematically
characterizes parameter and prediction uncertainty (78). Important prior
information includes SOD (79) and vertical carbon flux (80) measurements.
The east and west shelf sections are segmented into upper and lower layers,
where upper layers accommodate transport of freshwater and nutrients
across the shelf. The transport of flow and loads along the shelf are regu-
lated by long-term, along-shore wind velocities obtained from NOAA
weather stations. Monthly water flow and load estimates are linearly in-
terpolated to determine bioavailable N loads for consecutive 30-d averaging
periods leading up to the beginning of the annual shelf-wide cruises.
Surface-layer nutrients are subject to an effective settling rate that accounts
for organic matter production and sinking. The DO in the bottom layer is
controlled by water column DO demand, SOD, and reaeration which is
influenced by the rate of freshwater flow and short-term wind stresses.

In the original model application (31), SOD is treated as a “long-term”

demand that does not change from year to year. However, SOD is expected to
respond to sustained nutrient loading reductions that reduce organic matter
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fluxes to the sediment over the long-term (74, 81, 82). To quantify this change
in SOD, we use a relationship developed for coastal estuaries (83):

SOD= a
�

Lc
1+kLch

�b

where SOD is sediment oxygen demand (mol O2 m−2·y−1), Lc is organic car-
bon deposition rate (mol C m−2·y−1), h is the thickness of the lower layer (m;
∼20 m for both shelves), and a, b, and k are parameters with mean values of
0.76, 0.79, and 0.00079, respectively. The average vertical carbon flux in the
original model (31) was 5.48 mol C m−2·y−1 and SOD was 3.76 mol C m−2·y−1.
Based on Eq. 1, the modeled carbon flux produces an SOD, which is 29.8%
lower than the SOD determined by the model. Therefore, Eq. 1 is multiplied
by 1.425 for our load-reduction scenarios. Some adjustment is to be expec-
ted, given the uncertainty in Eq. 1 and the modeled benthic fluxes, and the
differences between the Gulf shelf and the estuaries used to establish Eq. 1
(31, 82). To create the load–response curve, the model was run for 21 normal
weather years with actual wind and flow conditions, and a range of N load
reductions. Thus, the response curves are based on average hydrological and
meteorological conditions under various load reductions.

LSU/LUMCON Model. This model is a regression of summer hypoxic zone size as a
function of May nitrate load, similar to what has been done for lakes (84, 85).
The model assumes that the hypoxic zone is driven mostly by the spring N load
and that other influences cause variations around a relatively stable baseline.
Previous studies (36, 86) suggested that the relationship between load and
hypoxic extent changed over time due to the system becoming more sensitive
to N loading as the result of incremental changes in organic matter accumu-
lated in the sediments (87), increases in the nitrate fraction of the total N pool,
and long-term climate change. As a result, the model coefficients varied over
time, but stabilized after 15 y (36). Therefore, the model is calibrated for years
2000–2015. The N loading data are log10-transformed to linearize the curvi-
linear relationship observed between load and the estimates of hypoxic extent.

VIMS Model. This regression model uses river NO concentration, river dis-
charge, and wind to estimate hypoxic area (35). To create load–response
curves for the present analysis, the river NO concentration was varied to
achieve load reductions, and river discharge and wind were held constant at
the 2000–2015 averages.

Creating an Ensemble. The ensemble load–response curve uses individual
models’ curves and their parameter uncertainty. For each load reduction, we
determined each model’s predictive distribution based on the model’s mean
and 95% CIs. The ensemble predictive distribution for each load was based on
Monte Carlo (MC) sampling from the predictive distributions of the individual
models (10,000 samples from each model), thereby obtaining an estimate of
the deterministic uncertainty (i.e., including input, structural, and parameter
uncertainty) associated with mean ensemble predictions. Negative predictions
obtained through MC sampling were set to zero. We compared ensemble
deterministic uncertainty with that obtained by accounting for both de-
terministic uncertainty and the uncertainty associated with model prediction
error. We determined eachmodel’s prediction error variance from the last 10 y
(2005–2015; excluding 2009 as unusual weather) of blind-forecast errors, using
a maximum-likelihood estimation. Whenever blind forecasts were not avail-
able, then the forecast error was set to the model’s cross-validation error, or to
the mean absolute error of the U-M and LSU/LUMCON blind forecasts for that
year, whichever was greater. Because the Task Force goal is based on a 5-y
running average, we divided the models’ prediction error variance by 5 to
estimate the uncertainty associated with a 5-y mean prediction. We then
added each model’s prediction error variance to the variance associated with
deterministic uncertainty to get the overall predictive variance. The ensemble
distribution was generated through MC sampling from the overall predictive
distributions of the individual models, as described above.
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